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This paper examines the channel morphology and dynamics of
three sub-catchments in the lower Enyong Creek. Hydraulic
geometryparameters were studied in relation to water quality
parameters. High values of coefficients of determination
between channel depth and discharge indicated that much of
the downstream variation in channel width to depth ratio can
be accounted for by processes of channel deepening. The
physicochemical properties of threesub-catchments were also
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1. INTRODUCTION
Recent advances in understanding the linkages between geomorphological

processesandevolution of landforms and assemblage of landforms in different morpho-
climaticregions of the world have spurred interest in the relationships between evolution of
streams and sediment yields surface water quality (Bridge, 2003, Charlston, 2008 and Ritter
et al, 2011 ).It is true that stream channels have complex morphologies and a number of
studies implicate several different controls on their development, including: tectonic and
structural (VanLaningham et al. 2006), bedrock (Snyder et al. 2003), storm pulses (Gupta
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1988), and non-fluvial processes such as landslides/debris flows (Brummer and Montgomery
2003, Stock and Dietrich 2006) and glaciers (Wohl et al. 2004). Other studies have
demonstrated the characteristic morphology of streams (Morisawa, 1968, Gregory and
Wallings,1973, Grant et al. 1990, Montgomery and Buffington 1997, Wohl and Merritt 2001,
Udosen, 2015 and UdosenandEtok, 2016); their hydraulic geometry (Wohl 2004,Fashae and
Faniran, 2015) and the complexity of sediment transport (Blizard andWohl 1998, Lenzi et al.
2004, Torizzo M, Pitlick J. 2004. Ausuebeogun and Ezekwe, 2012).

However, some tropical streams may have unique features that vary from their temperate
counterparts. The absence of glaciation excludes glacial landforms, such as u-shaped valleys
and coarse moraine deposits that are prevalent in some temperate montane basins. Relatively
high rates of chemical and physical weathering often denude tropical landscapes and may
affect rates of channel-sediment diminution and patterns of downstream fining (Brown et al.

1995, White et al. 1998, Rengers and Wohl 2007). Frequent landslides triggered by heavy
rains introduce pulses of coarse sediment to the channels and strongly link fluvial and
colluvial forces (Larsen et al. 1999). The relatively few studies that have addressed the
underlying controls structuring the morphology of tropical streams demonstrate the influence
of a variety of factors. Fashae and Faniran(2015), demonstrated the nature of
interrelationships among channel morphologic variables along the alluvial section of River
Ogun in Southwestern Nigeria. Lewis (1969) demonstrated that local lithologic factors, such
as bed material cohesion and channel constriction, influenced at-station hydraulic geometry
in the Rio Manati of north-central Puerto Rico. In the streams of Jamaica and Puerto Rico,
Gupta (1975) emphasized the role of high discharge relative to drainage area as a key
hydraulic control shaping channel morphology. Similar characteristics were noted in the Rio
Chagres in Panama, where hydraulic controls due to notably high unit discharge are
apparently sufficient to override lithologic controls and develop a basm with well-developed
downstream hydraulic geometry (Wohl, 2005)

Downstream hydraulic geometry (DHG) characterizes systematic downstream changes in
channel geometry as power-law relationships with discharge, and may be used to quantify the
influence of fluvial controls on channel form (Leopold and Maddock 1953).The iconic
research work by Leopold and Maddock (1953) was a watershed in hydraulic geometry.
They used abundant flow records compiled at gauging stations throughout the western United
States to establish statistjcally significant relationships between discharge and other variables
of open channel in quasi-equilibrium condition. As it is today, these relationships are known
as the hydraulic geometry of river channels. These relations are examined to understand how
a stream channel adjusts and accommodates gains of water and sediment with increases in
drainage area. These power functions as presented by Leopold and Maddock (1953) are
illustrated as follows:

w=aQb........ (1)
d=cQf...... ) -
v=kQm.. 3)
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The variables w, d, and v are wetted-channel top width, mean depth, and mean velocity of the
cross section, respectively; a, ¢, k, b, f, and m are numerical constants, b, f, m are exponents
while g, c, k are coefficients which must equal unity (Wohl et al. 2005)..

DHG has successfully described river patterns worldwide in many physiographic
environments ((Leopold and Maddock, 1953). The ubiquity of DHG in these self-forming
rivers has been explained from a combination of basic hydraulic and sediment transport
processes (e.g., Singh 2003, Parker et al. 2007). Although consistent power-law relations in
downstream channel geometry have been observed in some rivers in the Niger Delta Region
of Nigeria (Ausuegeogun and Ezekwe, 2014), it has been shown that rivers that are strongly
controlled by geologic rather than hydraulic controls will often display poorly defined DHG
(Wohl et al. 2004). The complicated hydraulics and sediment transport processes associated
with the lower Enyong Creek characterized by heterogeneity in geology may confound these
relationships.

It became quite evident from these studies that river basins in the humid tropics are among
the most extreme fluvial environments in the world due to a combination of unplanned
urbanization, high variability in annual rainfall and intense tropical storms which generate an
energetic and powerful flow regime (Udosen, 2014]. The high rates of gully erosion and
dramatically dissected landscapes prevalent in the humid tropical environments attest to the
power of these rivers. Yet channel morphology that is sculpted by fluvial processes in humid
tropical environments is relatively understudied, compared to the temperate regions of the
world.This paper investigates controls on stream channel morphology in the Lower Enyong
Creekin southeast of Nigeria, a tectonically inactive landscape with varying bedrocks and
structural controls that is rapidly eroding due to extremely wet tropical conditions, frequent
intense storms, and ahigh susceptibility to mass-wasting.

Study area- Location, geology and physiography

The study area is enclosed between latitudes 5°11'to 5°28' N and longitudes 7°51'E to 8°00E
(Fig. 1). Geologically, the area under study is underlain by a wide range of diverse geological
formations ranging from Asu River Formations e.g the Abakiliki Anticlinorium to the recent
alluvium in the south. The Asu River Group underlies most areas in the northern part of the
study area e.g its intensely fractured outcrops at Uburu. The Asu River Group, which is
Albian in age is sub-divided into three formations, comprising essentially of over 200m
bluish- grey to olive brown shales and sandy shales, fine-grained micacceous and calcareous
sandstones and some limestones (Offordile, 2002). The area is well represented by
structurally controlled ridges, denudational hills e.g the 150m high Obotme conical hill,
steep-sided valleys, saddle and col at Obot Ito Ikpo, extensive wetlands and alluvial plains
forming soil covers of silty clay, sandy and heavily weathered loam and alluvium.
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Figure 1: Location map of the' study area

Climate, Soil and Vege'ta.tion

The details of annual and monthly rainfall for Umuahia (the closest station to the basin
indicates that rainfall ranges from 1511mm in 1983 to 2572mm 1996 with a mean annual
0f2156mm, c.v.=44.4% recorded between 1972 and 2012 (Okutinyang, 2015). The monthly
distribution of rainfall is shown in Table 1. Fig. 2 clearly shows eight wet months-March'to
October, the dry months are November to February. The rainfall pattern is uni-modal in most
years. In the humid tropics rainfall is the main input into the river system and hence,
Thornthwaites water balance was computed using rainfall and evaporation data (Udosen,
2000). ‘

Table 1: Monthly Rainfall distribution at Umudike (1972-2012)

Month | Range Mean | Raindays per

month
Jan 0-78 15 1
Feb 0-132 38 3

Mar 4-266 113 i
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Apr 70-357 176 12

May 102-445 | 270 16

Jun 101-576 | 288 18

Jul 166-450 | 292 21

Aug  |103-535 | 306 21

Sep 206-670 | 341 21

Oct 75-499 257 16

Nov 0-212 53 5
Dec 0-35 7 1
Monthly rainfall distribution -
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Fig 2: The mean monthly r5ainfall at Umuahia, (1972-2012) .
The results indicate a runoff coefficient of 0.68 for Uyo, located barely 18kms south of the
study area. The implication is that over 60 percent of rainfall is converted to surface runoff,
depending on amount and type of vegetation, soil infiltration rates and slope aspects.
Furthermore, the computed water balance indicates that ground water contributes
significantly to channel flow from June to September .The demobilized rock minerals and
metals may enter the river system from ground water between June and September.

As noted earlier, Enyong Creek enjoys tropical climate and the temperature ranges from 26
to 32° C. The fluctuations in temperature are fairly uniform in character, except during the
dry months when the rise in temperature is higher than it is during the long wet period (eight
months-March to October) and the level of humidity is high (84%) due to close proximity to
the main Cross River Channel.

Materials and methods

The study involved map-based analyses of a topographic map sheet number 322 IkotEkpene
NE at a scale of 1, 50,000. The different morphometric parameters were determined by using
the standard methodologies while channel geometry, surface water quality as well as
geographic co-ordinates were determined as shown in Table 2. .
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Table 2: Field Sampling in both wet and dry seasons

Parameters

Methods

Instruments

Velocity, cross sectional area
and discharge

Discharge-Float method
Velocity-distance/time

Cross section-width X
depthMorisawa (1976) and
Smith and Stopp (1979). A
correction factor of 0.85 was
applied to results to correct for
inadequacies (Morisawa 1976,

Linen tape, rope, float .

Physicochemical,
metals -
Water samples were collected
approximately 15 — 20cm
below the water surface with
125¢m’ using pre-cleaned and
chemically neutral 1 litre
plastic vessels for laboratory
analysis of other
physicochemical parameters.

heavy

Schumm 1977, Smith and
Stopp 1979; Goudie 1981).

Schlosser, 1982; Hanson,
1973; Bartram and Balance,
1996). 1, 1986; APHA -
AWWA - WPCF, 2005;
USEPA, 1979) quoted in
Udosen and Etok, [2016].
Sampling was done at

specific time intervals

In situ measurements and
laboratory analysis

AAS was employed for trace
metals analysis.

-

Geographic co-ordinates Field measurement in a boat Hand Held GPS

Data analyses Mean, range, standard | Scientific calculator, SPSS
deviation,Anova, logarithm | package
transformation, Factor
Analysis

SURCE :Field survey (2014)

Location of sample sites .

This study was conducted on three locations along the Enyong Creek viz; Ito, ObioUsiere
and Okopedi (Fig.1)The geographic co-ordinates are listed in Table 4.

Table 3: Sampling Villages/location.

Village

Ito
ObioUsiere
Okopedi —Itu

Results and Discussion

Drainage Basin Morphometry

Location
5°19.227°’N  007°56.291’E
5°15.693’°N 007°56.970”E
5°12.144’'N  007°58.913’E

In the present study, the values of the morphometric variables computed/measured are
summarized in Table 4. The relatively low bifurcation ratio indicates flatter hydrograph peak
with least potential for flash flooding during storm events in the Lower Enyong Creek.
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Stream length of order-1in Ito sub-catchment is longer than those in ObioUsiere (Table 4].
The total area of Ito and ObioUsiere sub —catchments are 12.37km® and 4.44km’
respectively. ObioUsiere sub-catchment is unique in that although, it has a small catchment,
it has larger discharge figures and channel morphology parameters

Other aerial aspects such as indices of basin texture and shape viz; drainage density (Dd),
stream frequency (Fs), texture ratio (Rt), elongation ratio (Re), circularity ratio (Rc) and form
factor ratio (Rf) were calculated and results have been given in Table 4.

TABLE 4 :Morphometric properties of Order-2 streams draining Ito and Obio Usiere

Morphometric Parameters | ObioUsiere | Ito
Basin area 4.44km* | 12.37km2
Basin length | 3km 8km
Length Area ratio 3.42 6.33
Relief Aspects

Maximum basin relief 46m 137m
Minimum basin relief 3m 3m
Basin relief | 43m 134m
Relief ratio 0.014 0.017
General channel slope g 3
Ruggedness number 0.049 0.154
Basin perimeter 8.75km 19.75km
Drainage Texture

Bifurcation ratio 2 3

Mean stream length order-1 | 1.93km 3. 04km
Drainage density 21 .15km/km 21 .15km/km
Stream frequency 0.68 0.32
Infiltration number 0.78 0,37
Indices of Drainage Basin

shape

Form factor 0.36 0.77
Elongation ratio 0.69 0.70
Circularity ratio 0.23 0.13
Lemniscate K factor 0.51 1.29
Length of overland flow 0.93km 0.49km
Constant of  channel | 0.87 0.87
maintenance

Wandering ratio " 1.06 1.10
Fitness ratio 0.34 0.41

SOURCE; Analyzed from topo. Sheet 322 IkotEkpene NE

The length of overland flow of Ito sub catchment is 0.49 kilometers, while that of ObioUsiere
is close to a kilometer (0.93km), which shows gentler slopes and hence low surface runoff
and longer flow paths (Fig. 4)
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Fig. 4: Long Profile of Ito and ObioUsiere stream sub-catchments.

The headwaters of Enyong Creek are characterized by fairly steep ridges before cascading
down the side of the ridge and leveling out along the floodplains (Fig. 4). The inflection point
where the stream sharply steepens occurs at the edge of the intensely fractured outcrops
around Uburu. Many alluvial rivers develop systematic changes in slope, channel geometry,
and grain size from their headwaters downstream in response to changes in discharge and
sediment yield (Paola arid Seal 1995). These changes result in many well-known basin-scale
patterns such as concave-upward longitudinal profiles and progressive downstream fining,
whereby adherence or significant deviations from the theoretical patterns reﬂect the relative
importance of lithologic and hydraulic controls.

A theoretical profile of a graded stream {as in the study area) has a smoothly concave-
upward shape; steep in the headwaters and flat near the mouth (Hack 1957). A river of this
form has achieved an assumed balance between the erosion from fluvial processes and the
resistance from lithologic and tectonic forces. Deviations from this idealized grade, such as
changes in concavity (Seidl et al. 1994) and the presence of segmentation/knickpoints
(Crosby and Whipple 2006, Goldrick and Bishop 2007) can indicate the influence of non-
fluvial forces. In the humid tropical environment,severe gully erosion and landslides/debris
flows can locally constrain the channel gradient and concavity due to infrequent occurrence
of high intensity rainstorms (Udosen, 2014).

Downstream Hydraulic Geometry ofEnyong Creek

In Table 35, the channel parameters of the lower Enyong Creek show a general downstream
increase especially in depth and discharge characteristics. Channel width however shows a
random pattern, although a general increase in the downstream direction is observable. This
may be as a result of the river originating in the steep-sided sandstones ridges and cascading
into the broad slopes of the floodplains underlain by recent deposits of fine-grained-sand
from the main Cross River channel. The stream velocity increases from 0.162 to 0.257ms->
with a mean of 0.19+0.05ms-3 at Ito to 0.21-0.42 ms->, with a mean of 0.28+0.08ms-> at
Okopedi downstream. .
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Table 5. Changes in Hydraulic Geometry at different locations in the lower Enyong Creek.
Parameters Min-Max-(MEAN) Min-Max(Mean) -~ Min-Max(mean)
ITO ObioUsiere . Okopedi
Transparency 69.5-95.5
35-125.5 29-75
Depth (87.17£10.216)
(74.2£34.76) (43£17.17)
Width 3-5
4.29-5.29 7.3-8.9
Velocity ' (3.64£1.75)
(4.77£0.56) (8.3 £0.58)
Discharge 25-34
74-100.3 65-74
BOD (28 £25.29)
(75.92+17.82) (69.5+3.27)
0.162-0.257 )
0.117-0.35 0.21-0.42
(0.19+0.05) "
(0.23+0.23) .~ (0.28+0.08)
14.15-27.88
42.4-157.1 112.5-332.6
(19.91+5.64)
(107.28+47.48) (215.6+88.3)
0.10-0.46
0.15-0.9 0.55-6.3
(0.3+0.16) (1.40+1.98) (1.98+£2.17)
W/D Ratio=7.69 W/D Ratio=15.91 W/D Ratio=8.37

Source:Field Measurements, 2014

Most geomorphologists are under the impression that the velocity of a stream is greater in the
headwaters than in the lower reaches. The steepchannel gradient at head water of course,
gives the impression of greater velocity than that observed in a large river downstream. The
impression of greater velocity upstream stems in part from a considefation of river slopes
which obviously are steeper in the upper than in the lower reaches. It will be recalled,
however, that velocity depends on depth as well as on slope, as shown in the Manning
equation

1, 2 1
Q =harBsn. .. . @&

where
Q = discharge (m®s-1) . -
A = cross-sectional area (m?)
R = hydraulic radius (m) and
S = slope or gradient of the stream
Journal homepage:
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Depthis approximately equal to hydraulic radius for natural river sections. The fact that
velocity increases downstream pre-supposes that the rate of increase of depth downstream
tends to overcompensate for the decreasing slope and tends to provide a net increase of
velocity at mean annual discharge in the downstream direction of a river.

Width-Discharge Relations. The relationship between channel width (m) and discharge is
very weak (coefﬂcient of determination is 0.25),which implies that channel width explains
only 25% of variation in dlscharge in the lower Enyong Creek (Table 6). Fig. 5 indicates that
the regression equation is given as ;

Y =033%+ LB essusasninnsa (5)

Its corresponding exponents and coefficients are 0.26 and 0.50+0.27. réspectively. All these
values were found significantly related when tested with the students’ ¢ test at the 0.01
confidence level.

25
£ 15 ' y=0.329x + 1.079
)
5 R? = 0.2548
S 1-
0.5 -
0
0 0.5 1 1.5 2 L 3
Discharge
Fig.5: Relationship between channel width and discharge
Téble 6: Exponents and coefficients of downstream hydraulic geometry of Enyong Creek
Parameter  Correlation ~ Downstream  Regression
_ Coefficient+SE _ Exponent _ __Equation
“Width 1079%027 033 Y = 0.329x+1.079
Depth ,
Velocity 0.186+0.089 0.29 Y =0.285x +0.186

-1.016+0.11 0.20 Y =0.198x -1.0168

”‘ﬁg‘f is -ésliééfbta rébré&ehi me z)rnceé*mi’hfy in :‘rég‘j‘réssian meff?dént
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Depth-Discharge RelationsThe relationship between channel depth (m) and discharge is
very strong (coefficient of determination is 0.71),which implies that channel width explains
only 71% of variation in discharge in the lower Enyong Creek (Table 6). Fig. 6 indicates that
the regression equation is given as:

Y =029x+0.186................. (6) .
1 =y
® ¢ ¢ 00
0.8 - Y =0.2845x +0.186
¢ ¢ R?2=0.7106
< 0.6 -
-
) L 2
Q 04 -
0.2 -
0 i 1 ! l 1
0 0.5 1 15 i 2.5 3
Discharge

Fig 6: Relationship between channel depth and discharge

Velocity-Discharge RelationsThe relationship between current velocity (cm™) and discharge
is moderately strong (coefﬁcient of determination is 0.43), which implies that channel width
explains only 43% of variation in discharge in the lower Enyong Creek. Fig. 7 indicates that
the regression equation is given as:

Y =0.20x - 1.0168
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1 - d

Velocity

Discharge

Fig. 7: Relationship between current velocity and discharge

The results indicate that the exponents of DHGare 0.33 for width, 0.29 for depth, and 0.20
for velocity. With increasing discharge, width increases at approximately 1.14 times the rate
of depth. This implies 'that the width/depth ratio similarly increases in the downstream
directionviz 7.69, 15.91, and 8.37 at Ito, ObioUsiereand Okopedi respectively. In a similar
fashion, the channel form changes from a triangular ‘v’-shape (low w/d ratio) in the
headwaters(near the steep-sided sandstones ridge) to a more rectangular (high w/d ratio) form
towards the mouth at Okopedi. Velocity increases at a much lower rate of change in the
downstream direction resulting in a fairly higher mean cross-sectional velocity in the lower
reaches than in the headwaters during a flood at active-channel discharge. In this study, the
downstream relations for width, depth and velocity denoted as b = 0. 33, =029 and m =
0.20. The sum of the exponents did not satlsfy the requirements of the continuity principle.

The values of b, £ m did not sum up to 1.0, i.e.: 0.33 + 0.29 + 0.20 = 0.82. The products of
constants g, ¢, k also gives <1.0 (1.079 * 0.186 * -1.068 =< 1.0 (-0.86).

w=1.079 Q0.33 (8)
d=0.186 Q0.29 (9)
y=-1.068 Q0.20 (10)

The imperfect nature of these relationships suggests that Enyong Creek does not have a
normal hydrologic regimen (Morisawa 1976) and is not well adjusted to the channel
morphologic variables of width, depth and velocity, consequently, DHG is considered to be
not well-developed in Enyong Creek. This study corroborates the observation by Udo (1971).
Similarly, Abegunle et al (2001) noted that ‘the oversized valley of the EnyongRivemay
have resulted from the Imo Rive capturing its headwaters at a point near Umuahia’ It is aiso
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worth noting that fluvial instability may result from the nature of morphometric properties of
contributing area and are scale-dependent [Parker, 1976].

Leopold and Langbein (1962) obtained their downstream relations for width, depth and
velocity as b = 0.55, f= 0.36 and m = 0.09. Wolman (1955) obtained similar results frem
studies of the Brandywine Creek of Embreeville, Pennsylvania. These exponents when
summed up add up to 1.0 a requirement of the continuity principle. The channel hydraulic
geometry relations in the Niger Delta Region of Nigeria also showed similar results
(Aisuebeogun and Ezekwe, 2014). The following morphology-discharge relations were
established for River Sombriero in the Niger Delta Region of Nigeria.

w=3.88 Q0.59 (11)
d=141Q0.22 (12)
y=0.18 Q-0.19 (13)

The relationship of each of these factors or variables to discharge was linear and the sum of
the exponents satisfies the requirements of the continuity principle. The values of b, f, m sum
up to 1.0, i.e.: 0.59 + 0.22 + 0.19 = 1.0. The products of constants a, ¢, k also gives 1.0 (3.88
* 1.41 * 0.18 = 1.0. They also indicated that in the Sombreiro River the morphologic
variables are highly interrelated..Hydraulic geometry has been used to determine the baseline
geomorphic character in stream restoration designs and has been proposed as a preliminary
method for determining in-stream flow requirements for habitat assessments (Jowett, 1998
and Shields et al, 2003). While such applications are typically reserved to describe changes
along single river channels, it is possible that the downstream hydraulic geometry relations
may extend throughout river networks where climatic and geologic controls are similar.

Implications on surface water quality

Some hydraulic characteristics of stream channels such as depth, width, velocity, are known
to affect water quality in terms of suspended solutes, dissolved solids, PH, cations, anions
(Udosen, 2016b). In order to relate DHG to surface water quality, factor analysis was applied
to 29 hydrologic, physicochemical, anions and trace metals variables measured for the
selected sampling points in the Lower Enyong Creek. The eight factor model accounted for
88.2% of the variation in the original data. Factor 1 explained 14.5 % of the variation in data.
It is obvious that factor 1 is predominantly related to trace metal loads viz; Cu, Ni and Cr,
and is moderately related to salinity. This relationship is expected since the salinity of water
bodies are indicative of heavily polluted water bodies.

Table 7: Results of Factor Analysis

Rotation Sums of Squared Loadings

Total % of Variance | Cumulative %
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4.200 14.482 14.482 )
4.095 14.122 28.605
3.941 13.591 42.196]
3.699 12.755 54.950U
2.920 10.067 65.018J
2.834 9.774 74.791
2.461 8.487 83.278F
1.432 4.940 88.21ji
Extraction Method: Principal Component Analysis. LT

Factor 11 on the other hand, is essentially related to the variables that characterize water
inflow from ground-water and cassava processing mills viz; and sulphate, ammonium and Zn
[all are negatively related, except Zn]. . It also relates strongly with the water hardness. It is
perhaps worth noting that nitrate, electrical conductivity, TDS and Pb (the only trace
metals) load heavily on factor 111, while cross sectional characteristics viz; velocity, depth,
transparency and discharge alone load heavily on factor 1V. Together, factors 1, 11, 111 and
1Vaccount for almost 55% of the variance in the data set. The other factors contribute
progressively less, and they are related to Fe and temperature (factor V; TSS —factor V1 and
P", Mg, BOD (factorV11) and hardness and channel width-factor V111.

Conclusion

The morphology of the stream channels in Enyong Creek are influencedby a combination of
both local lithologic controls and moderate hydraulic forces Longitudinal profiles and
concavity may beinfluenced strongly by lithologic boundaries. This study has shown that
effective River planning and management is governed by an understanding of river
morphology and channel processes.. Detailed morphological assessment also enhances the
understanding of channel processes, its natural capability to adjust and depicts the inherent
character of the river and possible response to human impact. It provides the basis to develop
ecosystem based management for Enyong Creek.
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