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ABSTRACT

The available statistical analysis of rainfall data in Calabar is limited (o
" minintem, maximum, mean monthly and annual 1otals.  Further analyses have
ofien appeared in the form of range, line and bar graphs. These simplistic
analyses are not very useful in the prediction of future patterns of rainfall or in
the evatuation of climate change and variability. The possibility of predicting
Juture rainfall in Calabar is investigated using seasonal autoregressive
integrated moving average (SARIMA) model which is fitted on a 10-year old
rainfall data of Calabar (January 1991 —~ December 2000). The fitted model
turned out to be W, = (1-0.95393B) (1-08790B)a, The model was used us o
basis jor forecasting rainfall for Calabar town for a period of - years (2001 -
2004) and .the resulls were found to be satisfactory. The model is therefore
deemed suitable fov not only forecasinig rainfall for the town of Calabar but
Jor other towns in the wel tropic.
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INTRODUCTION

Prediction is the most important aspect of applied climatology and only
models can be used for this purpose. Prediction also known as forecasting is one
arca of the subject that is most fascinating to members of the public who utilize
weather information, Apart from this, it is also clear that we will be making very
little impact on the current debate on climate change without models. Yet modcls
of weather or climatic patterns are lacking for most weather elements in the third
world. The reasons for this are not far fetched. The first is the inadequacy of
information available at the disposal of researchers (Ayoade, 1 988). The second
reason has to do with the dearth of climatologists and imeteorologisis (Adefolalu,
1982). The third is the sceming lack of interest in the subject of climatology by
many persons including geographers. Yet the science of meteorology is as crucial
to man as the air around us!

With all these reasons, it is therefore not surprising that the available
weather statistics are limited and far in between. For example, the rainfall statistics
available for a town like Calabar, the wettest town in Eastern Nigeria, arc simply
mivimum, maximum, mean monthly and annual rainfall fipures. Further analysis
appear mercly as bar and line graphs. "This type of simplistic analyses are rather too
broad for any serious scicntific consideration. Elsewhere as in Europe, USSR and
United States, rigorous statistical techniques including multivatiate analyses have
been employed. However, Akintola (1986) analysed the rainfall data for Ibadan
using time series. In fact, time serics hias always been useful in modeling rainfall
pattcins. Usually, it involves the calculation of moving averages in which values
are determined for successive overlapping periods of five, ten or thirty years
(Barry, 1969). This type of analysis is usually the basis for prediction of rainy
days, inception periods, cessation periods, confidence limits etc. In fac fitting a
time serics model usually reveals clear-cut patteins of cycle, randommncss or
bundiness (Akintola, 1986). Ofien the aim is to interpret past patterns of rainfall in
terms of future probabilities. -
METHOD N v .

Table 1 shows the wmonthly rainfall totals in millimeters collested from
Meteorological Centre, Calabar International” Airport from Jauuary 1991 to
December 2000, The problem is to fit a suitable model to the data and produce

+ torecasts for up to four years ahead, a
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Figure 1 shows a clear seasonal pattern as well as slight npward trend.

‘The magnitude of the seasonal variation mcreases -at the same sort of rate as the
yearly mean levels and this indicates that a multiplicative seasonal model
appropriate. Following Box and Feukins (1970) and other authors, we will trv to fit
Autoregressive Integrated Moving Average (ARIMA) model.  Since Figure 2
shows trend and the size of the seasonal effects appears to increase with the mean,
then we may transtorm the data to make the scasonal cffect additive by use of
logarithmic transformation,

The simplest trend is the familiar “linear trend + noise”, for which the observation
at time t is a random variable x, given by

X O 4 ﬂ'_ -1 B srmrmemeemcennn e o e (‘)
Where o, } are counstants £, denoted a random error with zero mean  The mean
level at time t is given by my = (« + ). This sometimes called “trend term”™  The

analysis of a series which exhibits trend depends on whether one wants to measure
trend or remove the trend in order to analyse local fluctnziions, 1t also dependb on
whether the data exhibit seasonality. Since our data exhibit seasonality, it is a good
idea to start by calculating successively yearly averages ax these will provide a
simple description of the underlying trend.

A second procedure for dealing with a trend is to use a hnear fitter which
converts one time series {x} into another | Y} by the linear operation

4y
= }Ma,,,\,# e (2)
PaEgf -
Where {a;) is a set of weights. In order to simooth out local fluctuations and
estimate the local wmean, we choose the weights so that ¥a, — 1 and then the
operation is often referred to as a moving average. Kendell, Stuart and Ord (1983).
Moving average are often symmetric with s =~ ¢ and a; = a;. The simplest cxample
of symmetnc smoothing filten is the simple moving average. for which a, = /(zq i)
for r = ~q, - -+ q and the smoothed value of x, is given by
I o )
St » ?q " ] >T ”" - T (3)

The simple moving average is not penelally recommended by itsclf for
medam ing trend, although it can be useful for removing seasonal variation.

A special type of filtering, which is particularly useful for removing a trend,
is simply to difference a given time series until it becomes stationary (no symnetric
change in mean, no symmetric change in variance, aid if strictly periodic variations
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have been removed). This method is an integral part of the procedures advocated
by Box and Jenkins (1970). For non-seasoned data, first-order differencing 18
usually sufficient to attain apparent btﬂllﬂﬂdnly so that the new scries {yi, ===, N-
1} is formed from the original series {x,, ----- Xx} by

T e - ®)
First-order differencing is widely used. Occasionally, second-order differcncing is
required using the operator v?

Three seasoned models in common use are

(M  xi=mtste

(I  xc=my s te

("]) X5y 5 6t
Where m, is the deqeasonalucd mean level at time t, s is the seasonal effcct at time
t, and & is the random error. Model I describes the additive case while models 11
and Y both involve multiplicative seasonality. In madel IIT the error term i$ also
multiplicative and a logarithmic transformation will turn this into a (lincar) additive
mode! which may be casicr to handle.  The time plot should be examined to see
which model is likely to give the better description. The scasonal indices {s,} arc
usually assumed to change slowly through time so that s ~ s . s, where s is the
numbes of observations per year. The indices are usually novmalized so that they
sum tq zero in the additive case, or average to one in the multiplicative case.

A seasonced cffect can be climinated by differencing (Box and Jeukin
(1970)). Yor example with monthly date onc can employ the operator V12 where

VgXy = Xg = Xiogg 0 e aerere et etae s v e (5)
Alternative methods of seasoned adjmtm(,nt are reviewed by Pierce (1980),
Cleveland (1983) and Newbold (1984). These inchide the widely used x -- 11
method which employs a series of linear filters.

Many series contain a scasonal periodic component. The scasonal effect
implies that an observation for a particular month say, October is related to the
observations for previous Octpbers. With monthly observations {x} where s = 12
may certainly expect x; to depend on terms such as x . 12 and may be X . 24, a8
well as terms such as X . 1% .2, ~=-. BBox and Jenkins (1970) have gencralized the
Autoregressive Integrated Moving Average (ARIMA) to deal with seasonality, and
define a generalized multiplicative Seasonal Autoregressive Integrated Moving
Average (SARIMA) Model as

b (B) @y (BYW, = 0, (B) O (B) Zy e (V)
Where B denotes the backward shift operator, ¢p , ®p, 0 4 @ are polynomial of
order p. P, q, Q respectively, Z, denotes a purcly random process and

W, = v" e T )

VD
S
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The variable {W,} are formed from the onginal scries {x} not only by simple
differencing to remove trend, but also by scasonal differencing V; to remove
seasonality.
The model in equations (1) and (H) is qmd to be a SARIMA modd of order (p.d.q)
X (PD, Q). The values of d and D do not usually need to exceed one. When
fitiing a scasoncd model to data, the first task 18 to assssess values of d and D which
sreduce the series to stationarity and remove most of the seasonality. Then the
valucs of p,P, q and Q nced to be asscssed by looking at the Autocorrelation
functions (acf) and partial autocorrelation functions (pact) of the difference d series
and choosing a SARIMA model whose act and pact are of similar form. Fiually,
the model parameters may be estimated by some suitable iterative procedure.
RESIDUAL ANALYSIS

When model has been fitted to a time series, it is advisable 10 check that the
model really does provide an adequate description of the data. This is usually done
by looking at the residuals which are defined by
Residual = Observation ~ Fitted Value

If we have a “good” model then we expect the residuals to be “random™ and “close
to zero”, and model validation usually consists of plotting residuals in various
- ways. With time serics models we have the added feature that the residuals are
ordered in time and it is natural to treat them as a time serics,

The two obvious steps are to plot the residuals as a tume, plot, and to
calculate the acf of the residuals. The time plot will reveal anv outlines (extreme
valués) and any obvious autocorrelation or cyclic effects. The residual correlogram
will enable auto correlation effect to be examined more closely.

If {rx} denote the autocoriclation coefficient at log K of the {Z}. if we
have fitied the true model then the tiue errors forin a purcly random pi oo&ss and
their correlogram is such that each autocorrelation coefficient is r vy - N (0, /\;)fm

“reasonably large valucs of N.

Box and Jenkins (1970) describe what they call a portimanteau lack-of-fit
test which looks at the first M values of the correlogram all at once. The test
statistic is

Q=N ¥ s ' ®)
ko)

Where N is the number of tering in the differenced scrics and m is typically chosen

in the range 15 to 30. if the fittedd model is -appropriate then Q should be

appmxmmtely distributed as x* approximation can be rather poor for N < 100 and

vatious alternative statistics have been proposed. Ljung and Box (1978) suggest

:}ZS_‘Y}#?;?%M. However, the test have rather poor power properties Dallics and
28



Newbold (1979). A variety of other procedures have also been proposed for
looking at residual, Newbold (1988) but our own preference is usually just to look
at the fow values of 1 particularly at Jogs 1, 2 and the first scasonal lag Gf any and
sce if any are significantly different from zero using the limits-of + ¥\ - Ifthey,
- then modify the model in an appropriate way by putting in extra term to account for
the significant coefficient(s). However, if only one (or two) values of 1, are just
significant at lags which haye one obvious physical meaning, then there would not
be enough evidence 1o reject the model,
DISCUSSION =

Lirst, we transform the data by taking the logarithm of the. original data.
Transformation does three things to a raw data — it helps 1o stabilize the variance, -
makes seasonal effect additive and finally makes the data normally distsibuted.
Since madel building and forecasting are usually cartied out ¢n the assumption that
the data are normally distributed.  The first 38 cocflicients of the acf and pact that
is. Fig 3 and Fig. 4 of the logged data show pattern which suggest thd presence of
seasonal variations. Some sort of differcncing is clearly required
With monthly seasonal data, the obvious aperators to try are

V. Vi UV and \"'?’;3,

Wy log % denote the logarithms of the ubserved data, we start by looking at the
act and pact of Vy,  With N observations in the differenced series. a useful rule-
of-thumb for deciding i an autocorrelation coeflicient is sigmficantly different

front zero is 1o see it its modulus exceeds /. Hence the critical value is 0,183

and we lind sigaiticant coeflicients at lags 1, 2, 9, 12,24, 34, 35, 36. There is 0o
sign that the act it dinping out. and turther differencing is required. For Viy,, the
series s sHE nonslahionary and so we next iy VV:Y The number of terms in the
differenced series iy sow 107, and as approximate critical value is 0 194, We note
significant values at fags 1 and 3 but most of the other values are small and there is
no evidence on non-stationarity. Thus we choose 10 fit an ARIMA model to
VVisYe In )
order 1o identify a suitable ARMA model for V¥V, Yy, we need to ook at pacf in
Fig 6. As for the acf Fig.5, coefficients whose moduli exceed 0 194 may as a first
approximation, be taken to be significantly different from zero. In pact we note
sigralicant values at lags 1 and 3 When significant values oceur al unusual lags
they are usually ignored unless there is external information as to why such a lag
shoudd be enportant

We should now be in a position 10 identify an appropriate seasonal ARIMA
model to lit to the data. This means that we want 1o assess values of P.q. Pand Q
i the model detined by equation {6). " The scasonal values P and () are assessed by
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looking at the values of the acf and pacf at lags 12, 24, 36 - In this case the
values are large at lag 12 but small at lags 24 and 36, indicating no autorcgressive
term but one scasonal moviny average term. Thus we take P = 0 and Q = 1. The
values of the non-seasonal values p and q are assessed by looking at the first fow
values of act and pacf. The only significant valyes are at lags 1 and 3, and these
values are.not casy to interpret  An AR(3) model, as suggested by the pacf would
generally have a stowly decaying acf, while the MA(3) model, suggested by the
act, would generally have a slowly decaving pacf. Noting that the coellicient at lag
3 are only just significant, we could as a first try, take just one moving average
term and set p = 0 and g = 1. if we now work out the standard error of the
autocorrelation coeflicient at lag 3 using a more exact formula, we find that it is not
in fact significantly different from zere. This more exact formular Box and Jenkins
(1970) assumes that an MA(1) model is
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appropriate rather than a completely random series for which the formula // L

appropriate. 'This result gives us more reliance on the choice of p = 0 and q =
Thus we fit a SARIMA model with p =0, d =1, q=1and P=0, D =1, Q= 1
setting Wy VVy; log X,, the fitted model terms out to be

W, == (1-0.9539B)(1-0 879013 ')a,

Fig. 7 and Fig. 8 show the time plot and acf of residuals respectively.
Inspection of acf shows that none of the coeflicient is significantly different from
zero (although about 1 in 20 coefficient, will be significant at the 5 per cent level
under the null hypothesis that the residuals are random).  Also, a stem and leaf
display shows somewhat normal distribution. - There is no evidence that our fitted
model is inadequate and vo no alternative model will be med
FORECASTS

It was also necessary to attempt a forecasts of the rainfall which might
occur in Calabar within a <b-vear period  The result is presented below on table.
From this icsuli, it s clear thai this model can be very usetul in predicting rainfall
in Calabar.
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Table 2: Rainfall Predictions Using the SARIMA Model
Forecast

J I M A M J J A S ON D
2001 17.884 3.929 165.300 222.363 214.255 344.053 492.006 422.751 371.163
342.285 145.741 6.171
2002 17.454 3.834 161,324 217.014 209.101 335.777 480.171 412.582 62.235
334.052 142.235 6.028
2003 17.034 3.742 157 443 211.794 204.071 327700 468.622 402.658 353.523
326.017 138.814 5.883
2004 16.624 3.652 153.657 206.700 ]99 163 319.819 457.351 392.975 345.020

318.176 135.476 5.742
From Table 2, it is clear that the model approximate reality. For cxample,
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the forecast for the month of January shows that rainfall for the next four years may
average 17 m and for December it may not exceed 6 mm.

CONCLUSION _ v _ 7

Geographers and Environmentalists arc interested- in long-term variability
of climatic parameters. This study has analysed a 10-vear Rainfall data of Calabar
using seasonal Autorogressive Integrated Moving Average (SARIMA). This fitted
model turned out to be

W, = (1-0.95393) (1-0.8290B'")a,

This model was used as the basis for forecasting rainfall figures for Calabay
for the next 4 years. It is our conclusion that this model will be very useful in the
prediction of rainfall for not only Calabar but for other towns in the humid tropics.
And information on predicted values of rainfall are very essential at this time of
perceived global warming and climate change.  Indeed we can only prepare for
periods of marked deviations from the mean 1if we know and can predict such
deviations (Havward & Oguntovuibo, 1987)
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